Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540046

RESUMO

The effects of climate change are becoming more apparent, predominantly concerning the impacts of ocean acidification on calcifying species. Many marine organisms rely on chemical signals for processes such as foraging for food, predator avoidance, or locating mates. The process of how chemical cues in marine invertebrates function, and how this sensory mode is affected by pH levels, is less researched. We tested the impact of reduced pH (7.6), simulating end-of-the-century predicted average ocean pH, against current oceanic pH conditions (8.2), on the behavioural response of male shore crabs Carcinus maenas to the female sex pheromone bouquet consisting of Uridine-diphosphate (UDP) and Uridine-triphosphate (UTP). While in current pH conditions (8.2), there was a significant increase in sexual interactions in the presence of female pheromone, males showed reduced sexual behaviours at pH 7.6. The crab weight-pH relationship, in which larger individuals respond more intensely sexually in normal pH (8.2), is reversed for both the initial detection and time to locate the cue. These results indicate that lowered pH alters chemical signalling in C. maenas also outside the peak reproductive season, which may need to be taken into account when considering the future management of this globally invasive species.

2.
PNAS Nexus ; 2(5): pgad137, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228511

RESUMO

Heat alters biology from molecular to ecological levels, but may also have unknown indirect effects. This includes the concept that animals exposed to abiotic stress can induce stress in naive receivers. Here, we provide a comprehensive picture of the molecular signatures of this process, by integrating multiomic and phenotypic data. In individual zebrafish embryos, repeated heat peaks elicited both a molecular response and a burst of accelerated growth followed by a growth slowdown in concert with reduced responses to novel stimuli. Metabolomes of the media of heat treated vs. untreated embryos revealed candidate stress metabolites including sulfur-containing compounds and lipids. These stress metabolites elicited transcriptomic changes in naive receivers related to immune response, extracellular signaling, glycosaminoglycan/keratan sulfate, and lipid metabolism. Consequently, non-heat-exposed receivers (exposed to stress metabolites only) experienced accelerated catch-up growth in concert with reduced swimming performance. The combination of heat and stress metabolites accelerated development the most, mediated by apelin signaling. Our results prove the concept of indirect heat-induced stress propagation toward naive receivers, inducing phenotypes comparable with those resulting from direct heat exposure, but utilizing distinct molecular pathways. Group-exposing a nonlaboratory zebrafish line, we independently confirm that the glycosaminoglycan biosynthesis-related gene chs1 and the mucus glycoprotein gene prg4a, functionally connected to the candidate stress metabolite classes sugars and phosphocholine, are differentially expressed in receivers. This hints at the production of Schreckstoff-like cues in receivers, leading to further stress propagation within groups, which may have ecological and animal welfare implications for aquatic populations in a changing climate.

3.
Adv Mater ; 35(30): e2300099, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37078987

RESUMO

The potential of the anode, at which the evolution of oxygen begins, is a key parameter that describes how well water is split in water electrolyzers. Research efforts related to electrocatalytically initiated water splitting that aim at reducing the oxygen evolution reaction (OER) overpotential to date focus on the optimization of materials used to produce the electrodes. Descriptors for the readiness of the H2 O molecule itself to break down into its components have not been considered in water electrolysis experiments so far. In a simple set of experiments, it is found that adding dioxane to aqueous solutions leads to a substantial blueshift of the frequency of the OH stretch vibration which is a sign of an increased strength of the OH bond (intramolecular bonding). This phenomenon coincides with a significant increase in the OER onset potential as derived from cyclic voltammetry experiments. Thus, the OH stretch frequency can be an ideal indicator for the readiness of water molecules to be split in its cleavage products. This is thought to be first example of a study into the relationship between structural features of water as derived from Fourier transform infrared (FTIR) spectroscopic studies and key results derived from water electrolysis experiments.

4.
PLoS One ; 17(10): e0276889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301985

RESUMO

Anthropogenic noise is a recent addition to the list of human-made threats to the environment, with potential and established negative impacts on a wide range of animals. Despite their economic and ecological significance, few studies have considered the impact of anthropogenic noise on crustaceans, though past studies have shown that it can cause significant effects to crustacean physiology, anatomy, and behaviour. Mating behaviour in crustaceans could potentially be severely affected by anthropogenic noise, given that noise has been demonstrated to impact some crustacean's ability to detect and respond to chemical, visual, and acoustic cues, all of which are vital in courtship rituals. To explore if noise has an impact on crustacean mating, we tested the responses of male green shore crabs (Carcinus maenas) from the southwest UK coast by exposing them to ship noise recordings while simultaneously presenting them with a dummy-female soaked in the female-sex pheromone uridine diphosphate (UDP) in an experimental tank setup (recording treatment: n = 15, control treatment: n = 15). We found a significant, negative effect of noise on the occurrence of mating behaviour compared to no noise conditions, though no significant effect of noise on the time it took for a crab to respond to the pheromone. Such effects suggest reproductive impairment due to anthropogenic noise, which could potentially contribute to decreased crustacean populations and subsequent ecological and economic repercussions. Given the findings of our preliminary study, more research should be undertaken that includes larger sample sizes, double blind setups, and controlled laboratory trials in order to more fully extrapolate the potential impact of noise on mating in the natural environment.


Assuntos
Braquiúros , Ruído , Atrativos Sexuais , Animais , Feminino , Masculino , Braquiúros/fisiologia , Ruído/efeitos adversos , Atrativos Sexuais/fisiologia
5.
Glob Chang Biol ; 28(15): 4495-4505, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35574993

RESUMO

Chemical communication via infochemicals plays a pivotal role in ecological interactions, allowing organisms to sense their environment, locate predators, food, habitats, or mates. A growing number of studies suggest that climate change-associated stressors can modify these chemically mediated interactions, causing info-disruption that scales up to the ecosystem level. However, our understanding of the underlying mechanisms is scarce. Evidenced by a range of examples, we illustrate in this opinion piece that climate change affects different realms in similar patterns, from molecular to ecosystem-wide levels. We assess the importance of different stressors for terrestrial, freshwater, and marine ecosystems and propose a systematic approach to address highlighted knowledge gaps and cross-disciplinary research avenues.


Assuntos
Mudança Climática , Ecossistema , Água Doce
7.
J Chem Ecol ; 48(4): 455-473, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187610

RESUMO

Marine macroalgae are important ecosystem engineers in marine coastal habitats. Macroalgae can be negatively impacted through excessive colonization by harmful bacteria, fungi, microalgae, and macro-colonisers and thus employ a range of chemical compounds to minimize such colonization. Recent research suggests that environmental pH conditions potentially impact the functionality of such chemical compounds. Here we predict if and how naturally fluctuating pH conditions and future conditions caused by ocean acidification will affect macroalgal (antifouling) compounds and thereby potentially alter the chemical defence mediated by these compounds. We defined the relevant ecological pH range, analysed and scored the pH-sensitivity of compounds with antifouling functions based on their modelled chemical properties before assessing their distribution across the phylogenetic macroalgal groups, and the proportion of sensitive compounds for each investigated function. For some key compounds, we also predicted in detail how the associated ecological function may develop across the pH range. The majority of compounds were unaffected by pH, but compounds containing phenolic and amine groups were found to be particularly sensitive to pH. Future pH changes due to predicted average open ocean acidification pH were found to have little effect. Compounds from Rhodophyta were mainly pH-stable. However, key algal species amongst Phaeophyceae and Chlorophyta were found to rely on highly pH-sensitive compounds for their chemical defence against harmful bacteria, microalgae, fungi, and biofouling by macro-organisms. All quorum sensing disruptive compounds were found the be unaffected by pH, but the other ecological functions were all conveyed in part by pH-sensitive compounds. For some ecological keystone species, all of their compounds mediating defence functions were found to be pH-sensitive based on our calculations, which may not only affect the health and fitness of the host alga resulting in host breakdown but also alter the associated ecological interactions of the macroalgal holobiont with micro and macrocolonisers, eventually causing ecosystem restructuring and the functions (e.g. habitat provision) provided by macroalgal hosts. Our study investigates a question of fundamental importance because environments with fluctuating or changing pH are common and apply not only to coastal marine habitats and estuaries but also to freshwater environments or terrestrial systems that are subject to acid rain. Hence, whilst warranting experimental validation, this investigation with macroalgae as model organisms can serve as a basis for future investigations in other aquatic or even terrestrial systems.


Assuntos
Incrustação Biológica , Alga Marinha , Bactérias/metabolismo , Incrustação Biológica/prevenção & controle , Ecossistema , Concentração de Íons de Hidrogênio , Filogenia , Água do Mar/química , Alga Marinha/microbiologia
8.
Evodevo ; 12(1): 10, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579780

RESUMO

The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.

9.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34310682

RESUMO

In the past decade, many studies have investigated the effects of low pH/high CO2 as a proxy for ocean acidification on olfactory-mediated behaviours of marine organisms. The effects of ocean acidification on the behaviour of fish vary from very large to none at all, and most of the maladaptive behaviours observed have been attributed to changes in acid-base regulation, leading to changes in ion distribution over neural membranes, and consequently affecting the functioning of gamma-aminobutyric acid-mediated (GABAergic) neurotransmission. Here, we highlight a possible additional mechanism by which ocean acidification might directly affect olfaction in marine fish and invertebrates. We propose that a decrease in pH can directly affect the protonation, and thereby, 3D conformation and charge distribution of odorants and/or their receptors in the olfactory organs of aquatic animals. This can sometimes enhance signalling, but most of the time the affinity of odorants for their receptors is reduced in high CO2/low pH; therefore, the activity of olfactory receptor neurons decreases as measured using electrophysiology. The reduced signal reception would translate into reduced activation of the olfactory bulb neurons, which are responsible for processing olfactory information in the brain. Over longer exposures of days to weeks, changes in gene expression in the olfactory receptors and olfactory bulb neurons cause these neurons to become less active, exacerbating the problem. A change in olfactory system functioning leads to inappropriate behavioural responses to odorants. We discuss gaps in the literature and suggest some changes to experimental design in order to improve our understanding of the underlying mechanisms and their effects on the associated behaviours to resolve some current controversy in the field regarding the extent of the effects of ocean acidification on marine fish.


Assuntos
Organismos Aquáticos , Olfato , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
10.
Mar Pollut Bull ; 169: 112533, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058499

RESUMO

Numerous studies have estimated the abundance of plastics in our oceans and warned of its threat to wildlife. However, mechanisms underlying its attractiveness to marine life remain unclear. Though visual similarities to food sources have been suggested, recent studies show that biofouled plastics release dimethyl sulfide which marine fauna mistake for food whilst foraging. Our study shows that the plastic additive oleamide (9-octadecenamide) attracts hermit crabs (Pagurus bernhardus). Respiration rate increases significantly in response to low concentrations of oleamide, and hermit crabs show a behavioral attraction comparable to their response to the feeding stimulant betaine. Oleamide has a striking resemblance to the necromone oleic acid, a chemical released by arthropods during decomposition. As scavengers, hermit crabs may misidentify oleamide as a food source, creating an olfactory trap. As such, our short communication demonstrates that additive leaching may play a significant role in the attraction of marine life to plastic.


Assuntos
Anomuros , Animais , Ácidos Oleicos , Plásticos
11.
J Chem Ecol ; 47(10-11): 859-876, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34014453

RESUMO

With carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA's conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


Assuntos
Anomuros/fisiologia , Sinais (Psicologia) , Percepção Olfatória , Fenetilaminas/metabolismo , Água do Mar/química , Animais , Oceanos e Mares
12.
Front Physiol ; 10: 731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333474

RESUMO

The effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Sparus aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.

13.
ChemSusChem ; 11(20): 3661-3671, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30095243

RESUMO

A novel oxygen evolution reaction (OER) catalyst (3 D S235-P steel) based on a steel S235 substrate was successfully prepared by facile one-step surface modification. The standard carbon-manganese steel was phosphorized superficially, which led to the formation of a unique 3 D interconnected nanoporous surface with a high specific area that facilitated the electrocatalytically initiated oxygen evolution reaction. The prepared 3 D S235-P steel exhibited enhanced electrocatalytic OER activities in the alkaline regime, as confirmed by a low overpotential (326 mV at a 10 mA cm-2 ) and a small Tafel slope of 68.7 mV dec-1 . Moreover, the catalyst was found to be stable under long-term usage conditions, functioning as an oxygen-evolving electrode at pH 13, as evidenced by the sufficient charge-to-oxygen conversion rate (faradaic efficiency: 82.11 and 88.34 % at 10 and 5 mA cm-2 , respectively). In addition, it turned out that the chosen surface modification delivered steel S235 as an OER electrocatalyst that was stable under neutral pH conditions. Our investigation revealed that the high catalytic activities likely stemmed from the generated Fe/(Mn) hydroxide/oxohydroxides generated during the OER process. Phosphorization treatment therefore not only is an efficient way to optimize the electrocatalytic performance of standard carbon-manganese steel but also enables for the development of low-costing and abundant steels in the field of energy conversion.

14.
Glob Chang Biol ; 22(12): 3914-3926, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27353732

RESUMO

Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions.


Assuntos
Mudança Climática , Concentração de Íons de Hidrogênio , Peptídeos/química , Água do Mar/química , Animais , Braquiúros/fisiologia , Peixes/fisiologia , Invertebrados/fisiologia , Oceanos e Mares
15.
Ecotoxicol Environ Saf ; 124: 105-110, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26476878

RESUMO

Fossil fuel emissions and changes in net land use lead to an increase in atmospheric CO2 concentration and a subsequent decrease of ocean pH. Noticeable effects on organisms' calcification rate, shell structure and energy metabolism have been reported in the literature. To date, little is known about the molecular mechanisms altered under low pH exposure, especially in non-calcifying organisms. We used a suppression subtractive hybridisation (SSH) approach to characterise differentially expressed genes isolated from Platynereis dumerilii, a non-calcifying marine polychaeta species, kept at normal and low pH conditions. Several gene sequences have been identified as differentially regulated. These are involved in processes previously considered as indicators of environment change, such as energy metabolism (NADH dehydrogenase, 2-oxoglutarate dehydrogenase, cytochrome c oxidase and ATP synthase subunit F), while others are involved in cytoskeleton function (paramyosin and calponin) and immune defence (fucolectin-1 and paneth cell-specific alpha-defensin) processes. This is the first study of differential gene expression in a non-calcifying, marine polychaete exposed to low pH seawater conditions and suggests that mechanisms of impact may include additional pathways not previously identified as impacted by low pH in other species.


Assuntos
Regulação da Expressão Gênica , Poliquetos/genética , Água do Mar/química , Animais , Citoesqueleto/fisiologia , Metabolismo Energético/genética , Concentração de Íons de Hidrogênio , Poliquetos/fisiologia
16.
Brain ; 139(Pt 2): 431-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26608744

RESUMO

The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones ß-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet.


Assuntos
Ácidos Decanoicos/metabolismo , Ácidos Decanoicos/uso terapêutico , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Animais , Ácidos Decanoicos/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/química , Xenopus laevis
17.
ChemSusChem ; 8(18): 3099-110, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26276387

RESUMO

The surface of steel S235 was oxidized by Cl2 gas and checked for its electrocatalytic efficiency regarding oxygen formation in aqueous solution. If exposed to humid Cl2 gas for 110 min, steel S235 became an electrocatalyst that exhibits an overpotential for the oxygen evolution reaction (OER) of 462 mV at 1 mA cm(-2) at pH 7. The OER activity of the same sample at pH 13 was moderate (347 mV overpotential at 2.0 mA cm(-2) current density) in comparison with OER electrocatalysts developed recently. Potential versus time plots measured at a constant current demonstrate the sufficient stability of all samples under catalysis conditions at pH 7 and 13 for tens of hours. High-resolution X-ray photoelectron spectra could be reasonably resolved with the proviso that Fe2 O3 , FeO(OH), MnO(OH), and Mn2 O3 are the predominant Fe and Mn species on the surface of the oxidized steel S235.

18.
Mar Pollut Bull ; 95(1): 166-72, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25913791

RESUMO

An important priority for any organism is to maintain internal cellular homeostasis including acid-base balance. Yet, the molecular level impacts of changing environmental conditions, such as low pH, remain uncharacterised. Herein, we isolate partial Na(+)/H(+)exchangers (NHE), carbonic anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and investigate their relative expression in acidified seawater conditions. mRNA expression of NHE was significantly down-regulated after 1h and up-regulated after 7days under low pH treatment (pH 7.8), indicating changes in acid-base transport. Furthermore, the localisation of NHE expression was also altered. A trend of down regulation in CA after 1h was also observed, suggesting a shift in the CO2 and HCO3(-) balance. No change in CaM expression was detected after 7days exposure to acidified seawater. This study provides insight into the molecular level changes taking place following exposure to acidified seawater in a non-calcifying, ubiquitous, organism.


Assuntos
Poliquetos/fisiologia , Água do Mar , Animais , Calmodulina/genética , Anidrases Carbônicas/genética , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , RNA Ribossômico 18S , Água do Mar/química , Trocadores de Sódio-Hidrogênio/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1627): 20120444, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23980245

RESUMO

Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.


Assuntos
Aclimatação/fisiologia , Adaptação Biológica/fisiologia , Dióxido de Carbono/análise , Meio Ambiente , Poliquetos/fisiologia , Água do Mar/química , Animais , Concentração de Íons de Hidrogênio , Modelos Lineares , Mar Mediterrâneo , Poliquetos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...